Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
PLoS One ; 16(10): e0259070, 2021.
Article in English | MEDLINE | ID: covidwho-1484863

ABSTRACT

Public health surveillance systems likely underestimate the true prevalence and incidence of SARS-CoV-2 infection due to limited access to testing and the high proportion of subclinical infections in community-based settings. This ongoing prospective, observational study aimed to generate accurate estimates of the prevalence and incidence of, and risk factors for, SARS-CoV-2 infection among residents of a central North Carolina county. From this cohort, we collected survey data and nasal swabs every two weeks and venous blood specimens every month. Nasal swabs were tested for the presence of SARS-CoV-2 virus (evidence of active infection), and serum specimens for SARS-CoV-2-specific antibodies (evidence of prior infection). As of June 23, 2021, we have enrolled a total of 153 participants from a county with an estimated 76,285 total residents. The anticipated study duration is at least 24 months, pending the evolution of the pandemic. Study data are being shared on a monthly basis with North Carolina state health authorities and future analyses aim to compare study data to state-wide metrics over time. Overall, the use of a probability-based sampling design and a well-characterized cohort will enable collection of critical data that can be used in planning and policy decisions for North Carolina and may be informative for other states with similar demographic characteristics.


Subject(s)
COVID-19 Nucleic Acid Testing/statistics & numerical data , COVID-19 Serological Testing/statistics & numerical data , COVID-19/epidemiology , Population Surveillance , Adult , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing/methods , COVID-19 Serological Testing/methods , Cohort Studies , Demography/statistics & numerical data , Female , Humans , Male , North Carolina , Practice Guidelines as Topic , Risk
2.
JAMA Netw Open ; 4(6): e2115850, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1251884

ABSTRACT

Importance: Contact tracing is a multistep process to limit SARS-CoV-2 transmission. Gaps in the process result in missed opportunities to prevent COVID-19. Objective: To quantify proportions of cases and their contacts reached by public health authorities and the amount of time needed to reach them and to compare the risk of a positive COVID-19 test result between contacts and the general public during 4-week assessment periods. Design, Setting, and Participants: This cross-sectional study took place at 13 health departments and 1 Indian Health Service Unit in 11 states and 1 tribal nation. Participants included all individuals with laboratory-confirmed COVID-19 and their named contacts. Local COVID-19 surveillance data were used to determine the numbers of persons reported to have laboratory-confirmed COVID-19 who were interviewed and named contacts between June and October 2020. Main Outcomes and Measures: For contacts, the numbers who were identified, notified of their exposure, and agreed to monitoring were calculated. The median time from index case specimen collection to contact notification was calculated, as were numbers of named contacts subsequently notified of their exposure and monitored. The prevalence of a positive SARS-CoV-2 test among named and tested contacts was compared with that jurisdiction's general population during the same 4 weeks. Results: The total number of cases reported was 74 185. Of these, 43 931 (59%) were interviewed, and 24 705 (33%) named any contacts. Among the 74 839 named contacts, 53 314 (71%) were notified of their exposure, and 34 345 (46%) agreed to monitoring. A mean of 0.7 contacts were reached by telephone by public health authorities, and only 0.5 contacts per case were monitored. In general, health departments reporting large case counts during the assessment (≥5000) conducted smaller proportions of case interviews and contact notifications. In 9 locations, the median time from specimen collection to contact notification was 6 days or less. In 6 of 8 locations with population comparison data, positive test prevalence was higher among named contacts than the general population. Conclusions and Relevance: In this cross-sectional study of US local COVID-19 surveillance data, testing named contacts was a high-yield activity for case finding. However, this assessment suggests that contact tracing had suboptimal impact on SARS-CoV-2 transmission, largely because 2 of 3 cases were either not reached for interview or named no contacts when interviewed. These findings are relevant to decisions regarding the allocation of public health resources among the various prevention strategies and for the prioritization of case investigations and contact tracing efforts.


Subject(s)
COVID-19/prevention & control , Contact Tracing , Public Health , COVID-19/complications , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Contact Tracing/statistics & numerical data , Cost-Benefit Analysis , Cross-Sectional Studies , Disclosure/statistics & numerical data , Health Services, Indigenous , Humans , Incidence , Prevalence , SARS-CoV-2 , Telephone , United States/epidemiology
3.
MMWR Morb Mortal Wkly Rep ; 69(38): 1360-1363, 2020 Sep 25.
Article in English | MEDLINE | ID: covidwho-792612

ABSTRACT

Contact tracing is a strategy implemented to minimize the spread of communicable diseases (1,2). Prompt contact tracing, testing, and self-quarantine can reduce the transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) (3,4). Community engagement is important to encourage participation in and cooperation with SARS-CoV-2 contact tracing (5). Substantial investments have been made to scale up contact tracing for COVID-19 in the United States. During June 1-July 12, 2020, the incidence of COVID-19 cases in North Carolina increased 183%, from seven to 19 per 100,000 persons per day* (6). To assess local COVID-19 contact tracing implementation, data from two counties in North Carolina were analyzed during a period of high incidence. Health department staff members investigated 5,514 (77%) persons with COVID-19 in Mecklenburg County and 584 (99%) in Randolph Counties. No contacts were reported for 48% of cases in Mecklenburg and for 35% in Randolph. Among contacts provided, 25% in Mecklenburg and 48% in Randolph could not be reached by telephone and were classified as nonresponsive after at least one attempt on 3 consecutive days of failed attempts. The median interval from specimen collection from the index patient to notification of identified contacts was 6 days in both counties. Despite aggressive efforts by health department staff members to perform case investigations and contact tracing, many persons with COVID-19 did not report contacts, and many contacts were not reached. These findings indicate that improved timeliness of contact tracing, community engagement, and increased use of community-wide mitigation are needed to interrupt SARS-CoV-2 transmission.


Subject(s)
Contact Tracing/statistics & numerical data , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , COVID-19 , Humans , Incidence , North Carolina/epidemiology
4.
MMWR Morb Mortal Wkly Rep ; 69(33): 1127-1132, 2020 Aug 21.
Article in English | MEDLINE | ID: covidwho-725246

ABSTRACT

The geographic areas in the United States most affected by the coronavirus disease 2019 (COVID-19) pandemic have changed over time. On May 7, 2020, CDC, with other federal agencies, began identifying counties with increasing COVID-19 incidence (hotspots) to better understand transmission dynamics and offer targeted support to health departments in affected communities. Data for January 22-July 15, 2020, were analyzed retrospectively (January 22-May 6) and prospectively (May 7-July 15) to detect hotspot counties. No counties met hotspot criteria during January 22-March 7, 2020. During March 8-July 15, 2020, 818 counties met hotspot criteria for ≥1 day; these counties included 80% of the U.S. population. The daily number of counties meeting hotspot criteria peaked in early April, decreased and stabilized during mid-April-early June, then increased again during late June-early July. The percentage of counties in the South and West Census regions* meeting hotspot criteria increased from 10% and 13%, respectively, during March-April to 28% and 22%, respectively, during June-July. Identification of community transmission as a contributing factor increased over time, whereas identification of outbreaks in long-term care facilities, food processing facilities, correctional facilities, or other workplaces as contributing factors decreased. Identification of hotspot counties and understanding how they change over time can help prioritize and target implementation of U.S. public health response activities.


Subject(s)
Coronavirus Infections/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Rural Population/statistics & numerical data , Urban Population/statistics & numerical data , COVID-19 , Humans , Incidence , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL